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Development of Unsupervised Classification
Techniques for Water Quality Analysis

by Perry LaPotin 1 and Robert H. Kennedy 2

PURPOSE: Inlarge thematic studies, acquiring water quality data is costly and time-consumptive.
For this reason, remote sensing is used as an initial estimation technique to identify significant
environmental parameters. As shown in Cox et. al. (1998), correlation/regression may be used as
a statistical tool to link the radiometric measures (acquired by the remote sensing platform) to the
in situ measures (acquired by field sampling). This approach is both sensible and highly effective
when an adequate sampling density is used that provides significant coverage for the study region.
However, most studies cannot provide this coverage since the acquisition is far too costly and/or
time-consumptive to meet the stochastic measures for sampling accuracy and precision. In addition,
the related problem of how best to design a spatial sample within a highly diverse system
(heterogeneous environmental strata) is an ongoing field of research (Bruce and Gao 1998).

This technical note examines an innovative method of performing unsupervised classification that
requires no a priori field sampling. The approach is self-contained and is not statistically biased by
a priori field samples. However, the technique is highly conducive to the use of an a posteriori
sample of field data to refine the unsupervised classes. In this regard, the technique may be used
to: (1) estimate coarse surface features that require detailed field sampling, and (2) locate unusual
patterns from within large regions that require in-depth field sampling to identify cause-and-effect
relationships.

The unsupervised method differs significantly from traditional methods applied within commercial
image processing applications (Smith and Cole 1999). The approach does not use random sampling
and is not based upon equal area sampling. In addition, no a priori assumptions are made concerning
the normality (symmetry, kurtosis) of the underlying image data. Rather, a focused methodology
is applied that looks for optimal separation of patterns and features.

BACKGROUND: Many reservoirs are large, morphologically complex ecosystems exhibiting
pronounced spatial and temporal trends in limnological characteristics (Kennedy, Thornton, and
Ford 1985; Sgballe et al. 1992). Longitudinal gradients in water quality are common for long
reservoirs receiving inflows from a single large tributary, especially when the point of inflow is
distant from the dam. This is due primarily to the effects of sedimentation and density currents
(Kennedy and Walker 1990), since both processes result in declines in nutrients and suspended
material in surface waters along the axis of the reservoir. Reservoirs with two or more hydrody-
namically distinct basins, such as embayments formed by the flooding of secondary tributaries,
frequently exhibit great spatial heterogeneity due to the differential effects of material loading and
reduced mixing (Kennedy, Thornton, and Ford 1985).
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In traditional limnological investigations, one or more sampling stations are established at locations
representing homogeneous regions within the reservoir. However, the number of stations estab-
lished and subsequently sampled is often limited by logistics or funding, and spatial patterns are
frequently poorly represented by the samples collected. In addition, reservoirs are dynamic systems
in which water quality patterns are strongly influenced by hydrologic and operational events. As a
result, patterns in the distribution of water quality variables in most reservoirs exhibit significant
temporal change. Thus, traditional limnological investigative methods may not adequately address
concerns related to spatial and temporal trends in water quality.

Reflectance information, acquired using either satellite or airborne sensors, provides an alternative
method for describing spatial patterns in reservoir water quality. LANDSAT Thematic Mapper
(TM) provides information for seven wavelength bands at 30-m resolution. TM data, especially
those for bands 1-4 and 6, have been used to describe patterns in the distribution of water
temperature, turbidity (Feeney 1992), and algal pigment (Cox et al. 1998, Kennedy et al. 1994) in
surface waters. Such applications have generally involved the development of empirical models
relating observed water quality values and reflectance values for one or more wavelength bands.
However, these models often have limited application when applied to image data for dates other
than that upon which the model was developed (e.g., Kennedy et al. (1994)). This limitation reduces
the potential application of image data, since coincident water quality data would be required, and
cost savings would be minimal.

METHODOLOGY: Classification techniques are commonly applied to remotely sensed data to
synthesize and reduce large volumes of information into a compact useable form. For multispectral
and hyperspectral data, the technique is an essential step for reducing radiometric data into a format
that is conducive to environmental analysis.

Water quality data may be merged with remotely sensed data using two primary analysis techniques:
supervisedlassification andinsupervisedlassification. In the former case, itis assumed that

in situ ground samples are available and of sufficient quality (precision) that the remotely sensed
data should be classified (re-mapped) based upon the relevance of this information. In the latter
case, the analyst assumes that the in situ data are not available, of poor precision, or are too costly
to obtain within the required time interval (at the prescribed sampling scale). For these conditions,
the analysis is based purely upon the accuracy and precision of the image data. For the unsupervised
case, the imaging system is used as a sole-source method for the identification of patterns and
features.

Supervised Classification.  The supervised approach assumes that the fidelity of the in situ
measurement is superior to the free-weight classification of the image data. Restated: the in situ
measurement is assumed to be true with zero deviation at the time of measurement.

The use and application of in situ data also require coincidental acquisition of the field sample
relativeto the acquisition of the binary image data. Restated, there is a one-to-one temporal link
between the field sample and the acquired image data. Of course, this also assumes that exogenous
factors such as atmospheric attenuation and sun angle do not significantly bias the binary informa-
tion at the sensor level. In practice, the bias may be quite small if the images are acquired on a clear
day using a nadir imaging system. Alternatively, the bias may be quite large for airborne data that
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are acquired during different periods of the day with time varying sun angle and atmospheric
features.

The supervised approach offers many benefits for water quality analysis:

» The approach strongly weights in situ data. When these data are available and the informa-
tion is properly acquired (proper sampling design), supervised classification represents a
vital source of data that may be used to focus the resultant model.

» The approach is extremely stable and utilizes traditional statistical estimation as a means to
separate and distinguish patterns and features.

The disadvantages of supervised classification include:

» The approach assumes in situ data are both available and of high precision. When the
in situ data are of poor quality, the resultant classification is highly biased toward a class
structure that is erroneous.

» The in situ information must be acquired coincidental to the binary image data.

* There is no accountability for noise or exogenous features. Atmospheric attenuation may
be examined as a pre-processing step, but no accountability is provided from within the
classifier.

» The approach assumes a predefined statistical method for analysis (Maximum Likelihood,
Parallelepiped, etc.). No optimality conditionals are provided.

Various methods can be used in supervised classification (Richards 1999). Statistical methods are
usually based on linear discriminant functions and optimal Bayesian classification using maximum
likelihood (ML) algorithms. More recently, nonlinear artificial neural networks have been applied
with promising results (Eurostat 1994; Cheng and Titterington 1994).

Unsupervised Classification.  The unsupervised approach is advantageous when field sam-
pling cannot be adequately conducted. This is often the case when sampling is required for large
regions with limited funding, or when sampling must be conducted on aregular basis but field teams
cannot be deployed to cover the target site. The approach is often the only method available when
performing water quality assessments overseas. For sites with limited accessibility, image data,
which can be quickly acquired at the 5- to 30-m scale, are often the only source of data for performing
the required assessment.

As in the supervised case, the unsupervised approach assumes that the image data are of perfect
fidelity. No consideration is provided for noisy data or exogenous features that influence the
precision of the classification. Hence, image data that poor in quality will exhibit poor resultant
classification accuracy in both the supervised and unsupervised case.

The unsupervised approach offers many benefits for water quality analysis:
» The approach does not depend upon in situ data. When in situ data are available and the

information is properly acquired (proper sampling design), it may be used a posteriori as a
technique to further refine the classification.
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» The approach is extremely stable and utilizes traditional statistical estimation as a means to
separate and distinguish patterns and features.

Disadvantages of unsupervised classification include:

» The approach assumes that the image data are of excellent quality. The accuracy of the
classification cannot be easily established. Since in situ samples are not available, the clas-
sification represents a “best-guess” technique for identifying significant features.

* There is no accountability for noise or exogenous features. Atmospheric attenuation may
be examined as a pre-processing step, but no accountability is provided from within the
classifier.

» The approach assumas a priori stastical method for analysis (Isodata). In particular,
the Gaussian elements in the model do not always match the rather fragmented and discon-
tinuous nature of environmental data. The Isodata method has limited applicability in
water quality analysis since large classes (open water) are typically overrepresented in the
class structure. Alternatively, subtle features (coastal patterns and near-shore features) are
systematically underrepresented.

Commercial image processing applications use the Isodata algorithm as the sole analytical method.
This is a straightforward application of conventional cluster analysis techniques to multivariate
image data. In the area of artificial neural network theory, self-organizing nets (Kohonen 1997)
offer an alternative approach, which seems closely related to the many techniques of multidimen-
sional scaling (Cox and Cox 1994). The latter techniques focus on lower-dimensional mappings of
points, and the subsequent application of standard cluster analysis.

ANALYTICAL APPROACH: This technical note focuses on non-Isodata algorithms for unsu-
pervised classification. The approach is to develop a methodology that provides measures for the
spatial dependency within an image volume. The traditional (Isodata) method assumes equal area
sampling with no functional accountability for the spatial autocorrelation in the data. The next
approach uses spatial measures and alternative sampling techniques to determine the separability
of patterns and features. The resulting methods closely fit into the two basic characteristics for
remote sensing and GIS utilizatispatial dependenandspatial heterogeneity

Spatial dependence spatial autocorrelationmplies strong local associations among neighboring
observations (i.e., pixels) that decline with distance (Mokken 1996). Any valid spatial analysis
should incorporate this feature in its basic premises. Yet most pattern recognition analyses of
remotely sensed image data usually proceed by processing each pixel’s information separately and
independently over the entire image, thus neglecting this basic feature. Most recent types of spatial
analysis attempt to incorporate this local spatial dependence according to two approaches:

» Theneighborhoodapproach, usually in the form of a spatial weight mawkixvith ele-
mentsw;j, where for element (pixel) w;; = 1 for elemenj whenj is contiguous (a neigh-
bor) ofi, andwj; = 0 otherwise\;; = 0 usually) (Anselin 1988).

* Thedistanceapproach, where a distance functijndefines some distance metric between
elements (pixelsij in the image space (Cressie 1998).
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Spatial heterogeneity monstationarityis evidenced by the characteristic non-continuous variation

of features across local environments in an image. This is often evidenced by areas or regions in
images in which the boundaries and contours of objects are sharp or disjoint, then erratic or fuzzy
(Duitilleuil and Legendre 1993). As a consequence of these two basic characteristics, spatial
distributions do not fit the standard distributions of classical inferential parametric statistics and its
assumptions of linearity, stationarity, and independently and identically distributed variates. There-
fore, recent developments in nonparametric statistics and multivariate density estimation are used
(van Kemenade, La Poutré, and Mokken 1999a).

Algorithm. The algorithm is based on the eight steps (I to VIII) shown in Figure 1. Within the
first step, the raw image data are decoded from a baseline format for primary display and subsequent
analysis in Steps II-VIIl. The format varies by commercial vendor, but analysis is perfafitezd

the original binary encoded data (from the sensor system) has been “unpacked” into a digital array

RS Data
(I)

Pixel Sampling @
Q—l
Construct Pixel Clusters
(I11)

Cluster Analysis
(Iv)

Final

Classified Image H lP

(VIII)

o . Classification
Statistical Documentation (V)
Accuracy Assessment

(VII) @

Map Classified Image onto RS Data
(VD)

Figure 1. Central processing steps for unsupervised classification
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that is conducive to image processing. Once the image is decoded, the pixel information is sampled
using unbiased (traditional random) sampling or biased learning techniques (Step 1l). How
sampling may be biased to account for pattern variation is provided in the section on biased spectral
learning (see below). In Step Ill, preliminary clusters are formed by spectral class. The classes are
organized using cluster (factor) analysis in Step IV and formal classification is performed in Step V.
Step VI consists of remapping the classified information onto a new image plane of equal proportion
to the original RS Data (from Step 1). In this regard, the classified image in Step VI is always
coregistered to the original RS data. Within Step VII, statistical documentation is provided
concerning the methodology used within the unsupervised classification, and preliminary measure-
ments are provided for determining the accuracy and precision of the final product. In Step VIII,
the final unsupervised classification is displayed with “pixel-by-pixel” reporting of the class
structure. The main stochastic algorithms are described in the text below.

Biased Spectral Learning Rather than analyzing all pixels in the image, a statistically significant
sample of pixel spectra is selected within Step II. Focused sampling is conducted for the following
reasons:

* An adequately clustered spectral sample from the original image (in Step 1) will ensure suf-
ficient speed in performing classifications on large images. Moreover, one would like to
select a set of pixel spectral values (spectral vegtor ) from an image which are most in-
formative concerning the distribution of features and class structure of that image. Not all
pixels in the image fulfill this purpose, since noise and scarce (subtle) features are signifi-
cantly underrepresented using a uniform sample.

» The traditional random sample (e.g. Isodata) from the image would select far too many
pixels from dominant environmental strata (eogen water in a coastal image), and would
likely miss the small nearshore features of water quality/sedimentation patterns.

Hence, the clustering and selectivity of the samplingdaptivelybiased toward selection of pixels
containing one type of ground cover (‘homogeneous’ or ‘pure’ pixels), with a low degree of noise.
This is achieved by:

» Ensuring local geospatial representatsmd ensuring coverage over the image, by strati-
fied grid sampling from (a rectangular portion of) the image.

» Selecting pixels that are spatially homogenous in the form of small locally adjacent clusters
(patches), and then selecting within these patches pixels that are spectrally homogeneous
(in the spectral sample-space)t

Given a projected sample sizeMf stratification is performed by partitioning the image within an

N square (or rectangular) grid. Within each grid cell (stratum), a small patch of szehosen
randomly. For that patch, a pixel is iteratively selected with the largest value of the local/global
density ratio:

CY
R'(%,) =~ 1
1 For the Thematic Mapper image, volumme= 7 spectral bands.
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Within each patch, a pixel is randomly selected as a starting point and the pixel with highest density
in its k-NN neighborhood (the median or modal point) is found. This is repeated for that point until

no new points are found within the patch. This defines amodallocal deﬁ@it@ém) for that patch.
The global spectral density distributioh(® (§) is estimated on a simple random sample from the

total image and the corresponding global modal denfsff‘}/ (sn) is analogously determined by a
search of thé,-NN neighborhood of,, . After sampling with different starting points, the spectral

value of the pixel with the highest local/global density r&jdypically in the range 1to 104, is
chosen as the spectral data point representing this patch in the learning sample.

Using the previous example for a coastal image that is predominately composed of open water with
subtle near-shoreline features:

» The value oR will tend to be low for pixels that are primarily composed of open water,
though obviously, a sufficient number of pixels of the open class ‘water’ will be selected
in the learning sample, due to the dominance of open water throughout the RS image.

» The value oR for pixels covering the isolated water pockets and subtle near-shore
features will tend to be high. Hence, there is an excellent likelihood that the algorithm
will sample these features for classification analysis. Hence, the subtle features are surely
represented in the classification.

The sampling methodology is designed to correct for dominant classes, in order to ensure sufficient
representation in the learning sample of small, relatively scarce spectral data, such as those
corresponding with littered small objectsg oil in water, localized sedimentation patterns, tidal
patterns, water density/bathymetry variations.

The Formation and Analysis of Spectral Clusters. The method of adaptive sampling selects N
multispectral data points from the image volume consisting of m-dimensional spectral vectors

l,...,N. This sample is designed to represent the spectral distribution characteristic for the features
and class structure in the image. The method of unsupervised class detection deaksdad
retrievethe class structure from this N-sample. Spectral classes are seen as relatively dense clusters
or point clouds in the spectral m-space spanned by the N-sample. Within Figure 1, the preliminary
formation of spectral clusters is shown in Step Ill. The organization and analysis of these clusters
(Step 1V) is described below.

Hierarchical cluster analysis is used to locate and retrieve spectral classes. The approach is an
adaptive multivariate density estimation algorithm referred to als-th estimator The algorithm
estimates the density of the k-NN neighborhood for each sample point, as given by the m-
dimensional sphere. The data point is the center of the sphere, and the (Euclidean) distance to its
k" nearest neighbor is the radius. This approach is intuitive for the following reasons:

» Geometrically, all points that fit within the m-dimensional sphere are organized within the
cluster. Points outside the sphere cannot be reasonably positioned within the cluster since
their spectral signature is not sufficient for this classification.

* The nearest neighbor estimator is numerically stable and systematically outperforms fixed
kernel estimators for high-dimensional problems (van Kemenade, La Poutré, and Mokken
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1999b). In this regard, the algorithm is equal to (or superior to) the traditional Isodata op-
eration with fixed kernel representation. When the kernel happens to be equal to the fixed
kernel size selected by Isodata, the methods are equivalent. In all other applications, the
adaptive kernel size is numerically superior.

The k-NN density estimator for a sample point is given by:
f(x)=— 2)

whered," is KN-NN distance ok andV,, is the volume of the unit m-dimensional ball.

Class detection is performed by means of a variant of hierarchical cluster analysis (Kaufman and
Rousseeuw 1990). First, the sample points are ordered according to decreasing k-NN density.
Eligible points have densities exceeding a given minimum density threshold. In high-dimensional
space the ‘curse of dimensionality’ will hit us with very sparse densities, together with high values
of k-NN distances.In this regard, a conservative value for minimum density will result in a large
fraction of the learning sample not being allocated to a class. To control this problem, the algorithm
uses a different dominating threshold, namely,ftaetion of pointsallocated to some class.

The fraction sets a lower bound on the number of sample points to be allocated to one of the eligible
clusters. The minimum density criterion is then adapted so that the total fraction of the sample
allocated to some cluster at least equals that threshold. Obviously its operationimplies considerable
leniency concerning the minimum density criteria that follow from its application. The fraction
criteria was designed to cope with the ‘curse of high dimensionality’ and consequently is expected
to perform well for higher dimensions.

Following cluster analysis, sample points are linked to spectral classes based upon proximity
measures. A sample point s will be merged with a ca¢is its proximity), when the union of its
k-NN neighborhood with that of the nearest paim that class is sufficiently dense.

The joint neighborhood of andc is defined by the cylindrical envelope of their k-NN neighbor-
hoods. Geometrically this may be portrayed as a cylinder with half-spherical sides. With the margin
density for two clusters;, andg, (i.e. the densityV of their cylindrical envelope), a criterion for
their separability is defined, theseparation given by:

Vv

S,=
min{p,., p}

p

©)

wherep; denotes the maximum density in cluster

Clusters are separated when their separat@fficients below a chosen threshold value, e.g. 0.50;
otherwise they are merged into one class. Manipulation of the separation paragieté&gba-

1 The criteria will improve estimation in complex image volumes, but may bias representation for simple data
sets that do not require this control.
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tion 3 gives the means to vary the number of resulting classes and hence the level of detail in the
classified image.

The detected clusters or classes are found as a partition of the spectral learning N-sample into |C]|
classes (Step V). Each class consists of at least two points, because singleton sample points are not
considered as a class. However, the pixels in the image, from which these singleton spectral sample
points originate, can and will be allocated to a unique class.

In summary, the cluster analysis leddtetectionanddefinition of the typical class structure of the
image at the chosen levels for the system’s main parameters: (a) fraction of points classified, and
(b) separation of classes. Formal classification consists of assigning each pixel in the image to the
best-fitting class.

Image Classification: The Allocation of Pixels to Spectral ClassesFor image classification,
the class structure (with corresponding linear segments and spectral distribution) is contained in the
learning sample. Hence, this step requsgservisegixel classification.

In traditional modeling, optimal statistical techniques such as Linear Discriminant Analysis (LDA)
may be applied. However, the use of LDA would require additional training of a discriminant
function on the classified learning sample, which would further impede the performance of the total
classification process. Therefore, a direct pixel allocation approach is required involving two
alternative classification methods:

* A nonparametric nearest neighbor (1-NN) classifier. Each pixel is classified by finding
the (spectrally) nearest sample point in the learning sample. The class of the nearest point
is assigned to that pixel. Althoughkd-treeis used to find the nearest neighbor, the classi-
fication time per pixel is of order log N, where N is the size of the spectral learning sam-
ple. Hence, this is thelowclassification method.

» A projection pursuit (PP) classifier, using the first PC based on the first eigenvector in the
SVD of the classes (previously described as spectral blending). For each pixel in the im-
age, its distance to each class (i.e. line segment) is determined in terms of the coordinates
for its projection (first PC) onto each class’s first eigenvector. The pixel is then allocated
to the nearest class. Classification time per pixel is of the order of |C|, the number of
classes. Hence, this is thestclassification method.

The slow classification method may be used with (or without) blending. Alternatively, the fast
classification method always uses blending since the distance metric for the first PC is available.
Three possible classification methods may be considered:

* 1-NN classification using the slow algorithwithoutblending.
* 1-NN classification using the slow algorithmith blending.
» PP classification using the fast algorithwith blending.

The 1-NN classification using the slow algorithmithoutblending produces classification results
that are nearly identical to those of the Isodata technique. The previously described methodology
reduces to the direct first nearest neighbor method as used within Isodata, and only one class of
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information is used per pixel for mapping (portraying the image data). As a consequence, the
majority of the geometric information is discarded from the image, and the final resultant classifi-
cation appears as a thematic map. This is the single method used in most commercial image
processing applications (Smith, Pyden, and Cole 1999).

The remaining classification strategies use blending to portray the geometric information (and
mixture detail) within classes. Using the blending algorithm, any pixel in the image, say with
original spectral vector is represented by its projectigras a mixture of the endpoints of the linear

first PC segment of its class. These endpoints are given by the sum of vacoddb, wherea
indicates the first point of the first PC segmemnthe direction vector parallel to the first eigenvector

of the class cloud in the sample, and their sum the second point of the segment. Given a constant
¢ > 0, the length of the segmertt],|corresponds to 2c times the standard deviation along the first
PC. lts location is chosen so that+ .5b indicates the centroid of the class cloud in the sample.
Pixels with projectionsy betweena and b are represented as a mixtuaet+ kb. Pixels with
projections outside that range are mapped on the nearest endpoint, so k is then setto O or 1. The
length of the projectoix|- y| is an indicator of the distance of the pixel to its class. In the image
mapping within classes, blending is made to correspond with the luminance value of class color.
The final classified image is stored in the form of an RGB image in GIF-format.

Statistical Documentation and Accuracy Assessment For unsupervised classification, few
measures are available for determining the accuracy and precision of a classified map. Since in situ
field data are assumed to be negligible, stochastic measures must be applied to determine the
likelihood of correct class structure. To address this requirement, théitmaal Kolmogorov-
Smirnov (K-S) test may be employed, since the test is nonparametric and is geometrically based
upon the maximum distance between tieservedcumulative empirical sample distribution and
theexpectedtumulative sample distribution. While the test is not based upon a priori distributional
assumptions (is nonparametric), it does require specific definition of an underlying function for
comparison (i.e. the underlying class structure/population). The test statistic is derived as follows:

Let X4, X5, ..., X, be a random sample from a continuous distribution function F. Recall
that the empirical distribution function for the sample is defined by:

£ (x)= nun{)r(]i)s X (4)

where the numerator simply counts the number of samples Xi that are less than or equal to a
prescribed level x and the denominator is the total number of sample points.

Under Hy: F(x) = Fo(x), x O O, we expect reasonable agreement betw&gr) and its es-
timator Ifn(x) . Conversely, suppose the alternative hypothegi&@t) = Fy(x), is true for
some x. Under i the absolute deviationf,(x) Fo(x) | should be small for all x. Hence,
the following test statisti®,, is considered for classification accuracy:

1 This option is most appropriate in the initial stages of image classification, where the primary validation of the
classes is the basic issue (to be performed by investigating the class reproducing properties of various steering
parameters) in connection with patiiasitu data from field investigations.

10
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Dn = SUQ(DD

Fa(X) = R(X) (5)

ThusD,, is simply the largest absolute deviation betw@g("x) feg(®), and ifD,, is
small, so are the deviations.

For a ‘pure’ spectral class, the distribution of projections of pixels should be unimodal (binomial,

or a continuous mixture of binomials). Multimodality of that distribution could indicate a ‘mixed’
class (and a possible source of error). For this reason, three independent K-S tests are performed
against the following theoretical distributions:

» Theunimodal continuougGaussian Distribution).
* Themultimodal4-point polygon approximation
» Themultimodal8-point polygon approximation

For the Gaussian case, the K-S statistic is calculated relative to an underlying normal distribution.
The multimodal approximations are provided to examine higher-order deviations. The classifica-
tion method allows the user to reference class structure against these three measures as a means to
validate the classification. As in all cases where unsupervised classification is applied, high quality

in situ data may be examined aspast-hoc ést for classification accuracy. Given limited or
nonexistent field data, the three-distribution check provides an excellent measure piicigss

measure that is closely associated with classification accuracy.

EXAMPLE APPLICATION: Landsat TM scenes were acquired for two dates (8 June 1991 and
28 September 1991) coincident with intensive water quality sampling (Kennedy et al. 1994) at West
Point Lake, Georgid. West Point Lake is a large (surface area = 10.5;kmmlume = 45.7 hr#),
moderately deep (maximum depth = 25 m), mainstem storage reservoir located on the Chatta-
hoochee River 80 km downstream from the City of Atlanta in west central Georgia. Primary project
purposes include hydropower, flood control, and flow regulation for navigation. The Chattahoochee
River, which enters the lake approximately 56 km upstream from West Point Dam, carries heavy
sediment and nutrient loads, and has a marked influence on the quality of surface waters in West
Point Lake. Kennedy, Thornton, and Gunkel (1982) documented strong longitudinal gradients in
nutrients, chlorophyll concentration, and water clarity, which related to advective transport, algal
growth, and sedimentation. Pronounced spatial patterns in the distribution of important water quality
variables related to morphologic complexity of the basin, and the differential influences of secondary
tributaries have also been reported (Kennedy et al. 1994).

Recent efforts to improve West Point Lake water quality through reductions in nutrient loading
from upstream sources prompted questions concerning the relative importance of local nutrient
sources and led to an assessment of spatial patterns in water quality responses. Kennedy etal. (1994)

1 An additional seven scenes were acquired for the period June 21, 1990 to April 23, 1992. Selected scenes
were coincident with or were within 2 days of dates of water quality sampling efforts conducted as part of an
EPA Clean Lakes Feasibility Study (personal communication, David Bayne, Auburn University, Auburn,
AL). Station locations for the intensive sampling efforts were determined using GPS. Locations for the 11
stations sampled during the EPA study were approximated based on maps, buoy locations, and field
observations.

11
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collected and analyzed surface water samples for 50-60 sampling stations located throughout the
lake on dates coincident with Landsat overflights in 1991 as a means to describe spatial patterns in
the distribution selected water quality variables. Variables potentially influencing reflectance values
included water temperature, chlorophyll concentration, Secchi disk transparency, and turbidity.

The image layers are shown in Figures 2a-2f for the 8 June scene and in Figures 3a-3f for the
28 September scene. For this analysis, thermal band 6 was omitted to focus on 30-m multispectral
data. True color composite images (3,2,1 RGB) for the two respective dates are provided in Figures 4
and 5. The true color images have been equalized for optimal separation. As a result, the image
appears brighter and with greater contrast than the baseline radiometrically corrected data.

Preliminary classification results are provided in Figures 6-9. In Figures 6 and 7, raw output is
given from the classification module using the following parameters: 50-percent fraction separation,
80-percent cluster separation with k-NN equal to 10 spectral neighbors. A discussion of these
parameters and their logical use is provided in the “Conclusions” seclimRigures 8 and 9, the

raw classification from Figures 6 and 7 has been brightness/contrast enhanced to further display the
surficial features within West Point Lake. The precise correction for brightness/contrast is shown
below each image.

CONCLUSIONS: InFigures 5a and 5b and Figures 6a and 6b), unsupervised classification results
are provided for the two respective TM scenes. The results were generated using parameters that
provided excellent separation of features as measured by the K-S s@atisticEquation 5. The
following justification is given for the parameter selection:

» 50-percent fraction separationThis parameter sets the fraction of the sample points to be
allocated to a cluster. The 50-percent level represents a mid-point for this allocation that is
neither over-consumptive of points nor under-representative of patterns and fédteree-
fault separation is 90 percent.

» 80-percent cluster separatioifihis parameter sets the cluster merging threshold. Ultimately
this measure also controls the number of classes displayed in the final classification. The
80-percent level yields a large number of classes (approximately 20 classes for each of the
two TM scenes). The statistical significance of the feature is not controlled by the cluster
separation parameter. However, the degree of spectral blending, and the coarseness (fine-
ness) of detail is significantly affected by this parameter. Hence, the user must iteratively
test various separation levels to determine the proper level for the respective water quality
application. In general, small percentages (10 to 30 percent) yield classifications with 5 to
10 spectral classes. Levels above 80 percent can produce spurious results with far too
many spectral classes for adequate justification. The 80-percent level yields a nearly “un-
constrained” result that generally will not limit the number of classes for visualization.

» K-NN equal to 10 spectral neighbor3his parameter determines the size of the square
pixel window for density estimation within the hierarchical cluster analysis algorithm.

The window acts as an approximate “band-pass” filter in the cluster analysis. Windows
that are set too small do not adequately sample adjacent spectral levels (poor blending).
Windows that are set too large consume too many samples for adequate separation of
features. A default level of 10 spectral neighbors is commonly employed for excellent
pattern separation.
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a. 8 June 1991 TM Band 1. b. 8 June 1991 TM Band 2.
Primary Blue-Green (450 — 520 nm) Primary Green (520 - 600 nm)

c. 8 June 1991 TM Band 3. d. 8 June 1991 TM Band 4.
Primary Red (630 — 690 nm) Near Infrared (760 - 790 nm)

Figure 2. Image layers for 8 June (Continued)
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e. 8 June 1991 TM Band 5. f. 8 June 1991 TM Band 7.
Middle Infrared (1550 — 1750 nm) Middle Infrared (2080 — 2350 nm)

Figure 2. (Concluded)

a. 28 September 1991 TM Band 1. b. 28 September 1991 TM Band 2.
Primary Blue-Green (450 — 520 nm) Primary Green (520 - 600 nm)

Figure 3. Image layers for 28 September (Continued)
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c. 28 September 1991 TM Band 3. d. 28 September 1991 TM Band 4.
Primary Red (630 — 690 nm) Near Infrared (760 - 790 nm)

e. 28 September 1991 TM Band 5. f. 28 September 1991 TM Band 7.
Middle Infrared (1550 — 1750 nm) Middle Infrared (2080 — 2350 nm)

Figure 3. (Concluded)
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Figure 4. True color composite for West Point Lake, 8 June 1991
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Figure 5. True color composite for West Point Lake, 28 September 1991
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Figure 6. Primary water classification for West Point Lake, 8 June 1991
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Figure 7. Primary water classification for West Point Lake, 28 September 1991
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Figure 8.  Water classification for West Point Lake, 8 June 1991. Brightness (-33 percent) and contrast
(+78 percent) applied to enhance class structure
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28 September 1991. Brightness (-47 percent) and

Water classification for West Point Lake

Figure 9.

contrast (+85 percent) applied to enhance class structure
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The classification results shown in Figures 8 and 9 are innovative for three reasons. First, the
classification appears as a blended thematic map. In Figure 8, graded red intensity levels show open
water. The upper channel is shown in light red primarily due to surface water reflectivity. This
appears as a unique class in pink. Within the main body of the lake, three classes are shown from
medium red to dark red (near-black intensity) with graded reflectivity. In Figure 9, similar features
are shown along the upper reaches of the lake body. For this image, the texture is displayed using
a light brown (near-yellow) shading corresponding to the primary radiometric levels in the 28 Sep-
tember data. As displayed, the land use characterization is minor. The primary focus is open water
separation and within-class (interior) separation of surface features for West Point Lake.

Secondly, each class is generated using the focused learning sample. The classification results
strongly portray all available information from small features and subtle patterns in the lake. While
the class may (or may not) represent actual water quality parameters, the separation is statistically
significant at the 95-percent level for all displayed classes.

Thirdly, the K-S test is shown to be significant for each spectral class within Figures 6 and 7 and
Figures 8 and 9 using four spectral modes. This result indicates that the classification does not
contain pure spectral classes, and additional band separation (spectral decomposition) is required.
The test does not suggest the optimal strategy for separation of clusters, but does indicate that the
classification will require “iterative” improvements to create optimal (unimodal) separation. The
results are significantly above those generated by standard Isodata, since fewer than 10 percent of
all spectral classes could be fit to four spectral mddes.

Assessing water quality by applying unsupervised classification is significantly improved when
specific in situ samples are applied to the classification in a post hoc analysis. In this approach, the
unsupervised classification is performed and the K-S test is used to test for spectral purity in each
class. The in situ samples are then used as a basis to link the spectral classes to observed water
quality parameters. In the case of West Point Lake, there is a reasonable correspondence between
classification results for the above-described TM scenes and lake water quality data. In both scenes,
regions of increasing color intensity (Figures 6-9) correspond to regions exhibiting increasing
concentrations of algal pigments and decreasing levels of inorganic turbidity.

This technical note provides the detailed statistical foundations for the use and application of this
methodology. This approach to RS data classification offers an opportunity to improve current Corps
water quality monitoring capabilities and assess historical trends. Subsequent work will provide a
test of concept using ground samples apost hocanalysis.

1 The classification algorithm may not yield pure spectral classes for a number of reasons:
a. The TM data are geometrically averaged to 30 m. Each pixel portrays an average intensity (by spectral
band) as opposed to a pure signal (pure radiometric intensity).
b. Each TM band is of a broad spectral width. Each spectral class is composed of a large gradation of
radiometric values that are stored within a single spectral band.
c. Atmospheric attenuation and other system noise. The data are not pure. The signal-to-noise ratio for this
data varies by pixel position throughout the composite TM scene.
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POINTS OF CONTACT: For additional information, contact Dr. Robert H. Kennedy, U.S. Army
Engineer Research and Development Center, Waterways Experiment Station, (601) 634-3659,
kennedr@wes.army.nol the managers of the Water Quality Research Program, Dr. John Barko,
(601) 634-3654,barkoj@wes.army.miland Mr. Robert C. Gunkel, Jr., (601) 634-3722,
gunkelr@wes.army.milThis technical note should be cited as follows:

La Patin, P., and Kennedy, R. H. (2000). “Development of unsupervised classification
techniques for water quality analysi§\Vater Quality Technical Notes CollectigBRDC
WQTN-AM-07), U.S. Army Engineer Research and Development Center, Vicksburg,
MS. www.wes.army.mil/el/elpubs/wqtncont.html
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